Commanding Business Resilience.

Rock Properties from Lightning Databases: Transforming Geotechnical Operations and Accelerating the Time-to-Value

> H. Roice Nelson, Jr. & Dr. Jim Siebert CEO & Chief Meteorologist Dynamic Measurement LLC

Introduction

- Understanding spatial distributions of rock properties is key in exploring for natural resources.
- Boreholes are limited to providing rock properties at discrete locations.
- Lightning Rock Property Volumes demonstrate:
 - integration with other geophysical techniques (including seismic and potential field data)
 - to maximize areas evaluated, and
 - to minimize drilling requirements.

Lightning text and images Copyright © 2014 Dynamic Measurement LLC

Lightning Strike Measurements

- Location
- Time and Duration
- Rise Time
- Peak Current
- Polarity
- Peak-to-Zero

20

Peak to Zero

15

Density

Up-Going Lightning Strike & Terralevis Current Implications

New infrastructure, where questions asked: "Does lightning strike twice in the same spot? And does it mean I have oil on my property?"

Lightning Physics is analogous to Relaxation Oscillator Physics

The atmospheric capacitor is nearly the same physics

Just an additional resistance (R₂) limiting the current

R₂ is the resistance between the lightning strike point and the bottom plate of the capacitor

Lightning analysis is a new and cost effective data type

Lightning occurs everywhere.

Extensive evergreen lightning databases exist:

- No permitting nor site access required.
- DML quickly identifies sweetspots.

Calculations are cost effective:

- More lightning attributes than seismic attributes.
- Results tie to seeps, aquifers, anisotropy, faulting, and the basement

Innovative new lightning attribute applications:

- Mapping the near surface.
- Knowing fault orientation before fracking.
- Improving velocity and geological models.

Attributes Calculated or Displayed with DecisionSpace®

Surface Resistivity:

Peak-to-Zero:

Seismic Attributes Instantaneous Reflective Wavelet Curvature Geometrical Dip

- Rise-Time
- Peak Current
- Peak-to-Zero

- Total Wavelet Time
- Symmetry
- Density

- Semblance/Coherence
- AVO / AVA
- Derivatives

- Rise-Time-Rate
- **Temporal Versions**
- Tidal Gravity

Lighting Volume Attributes

- Resistivity
- Instantaneous Resistivity
- Curvature Resistivity
- Permittivity
 - Wavelet Permittivity
 - Dip Permittivity

- Temporal Versions:
- Before Event
- After Event

What Rock Properties are Critical to Geotechnical Operations?

Rock Type: Sedimentary, Metamorphic, or Igneous.

Density

Porosity, Formation Factor, and Archie's parameters

Thermal

Electrical

Migration Pathways

Geopressure

Mineralization and Hydrocarbon Halos

2-D Resistivity Imaging

Resistivity imaging data taken across the Katy-Hockley fault. Note the south-dipping sand layers and thickening lay layers in the downthrown side. After M. Saribudak, Fast Times, Vol 17, No. 1, March 2012

Resistivity and Permittivity are related to each of these Rock Properties!

Rock Property Specifics

Method	Type of measurement	Physical property detected
Gravity	Spatial variations in the strength of the Earth's gravitational field	Density
Magnetic	Spatial variations in the strength of the Earth's magnetic field.	Magnetic susceptibility
Seismic	Travel times of seismic waves	Density and elastic moduli
Electrical Resistivity	Electrical resistance	Resistance
Electromagnetic	Response to electromagnetic radiation	Resistance and Inductance
Induced Polarization (IP)	Apparent permittivity	Capacitance
Ground Penetrating Radar (GPR)	Travel time of radar pulses	Dielectric constant
Lightning	Location, Time, Rise-Time, Peak Current, Peak-to-Zero	Resistivity and Permittivity

Expansion of Borehole Rock Properties, limited to Discrete Locations

Rock properties are determined within a few feet of the borehole.

- Expensive, and can provide physical samples
- 2-D seismic enables estimation along a line.
- 3-D seismic enables estimation within a volume.
- Gravity enables density estimates over a large area.
- Magnetics enables estimates of basement depth and faulting.
- IP (Instantaneous Potential) enables estimates of resistivity and permittivity along survey lines.
- Lightning resistivity and permittivity volumes can be built within 2 months, at the same line and trace and sample spacing as any 3-D seismic survey where lightning data are available, filling Rock Property gaps between other surveys, at less cost.

Easy to integrate with all other data types using DecisionSpace®

Landmark

Michigan Examples (display on the right with SeisWorks in 2009)

MTU Test Site with Cross-Well Tomography Example

Courtesy Dr. Roger Turpening, Michigan Technology University

HALLIBURTON | Landmark

Lightning text and images Copyright © 2014 Dynamic Measurement LLC

Resistivity Section Between MTU Test Site Wells (displayed with G1)

MTU Test Site Wells Overlaid on Resistivity Section

HALLIBURTON

Landmark

Courtesy Dr. Roger Turpening, Michigan Technology University

Location of Type 1 Cylinder Anomalies in Analysis Area Horizontal-Slice through possible pinnacle reefs

Landmark

Type 1 Anomalies in Analysis Area: Resistivity Cylinders (B2)

© 2015 HALLIBURTON. ALL RIGHTS RESERVED. Lightning text and images Copyright © 2014 Dynamic Measurement LLC 16

High Resistivity to southwest on B-2 Horizontal-Slice with Oil & Gas Wells in Analysis Area posted (note lineaments)

Type 2 Lens (A-39) – a possible bioherm reef At Cross-Hairs on Horizontal-Slice in Analysis Area

Type 2 Anomalies in Analysis Area: Lenses (A-39) Note 4 Lenses in W-E section & 1 Cylinder, and 7 Lenses in N-S section and 1 large Cylinder

Resistivity Cube Probe with Resistivity Section at MIT Test Site Horizontal-Slice through Type 2 Lens Anomalies in Analysis Area

Permittivity Cube Probe with Permittivity Section at MIT Test Site and Horizontal-Slice through Type 1 Cylinder Anomalies in Analysis Area

Arizona Example: Resolution Copper Mine

Topography

Resolution Copper Resistivity Sections: Top & Middle Horizons

Resolution Copper Mine Top Resistivity Depth - Minimum Resistivity 200 meters beneath surface

Resolution Copper Mine

Middle Resistivity Depth – Average Absolute Resistivity 200 meters beneath surface

Resistivity Volume, Resolution Copper Mine

© 2015 HALLIBURTON. ALL RIGHTS RESERVED. Lightning text and images Copyright © 2014 Dynamic Measurement LLC

Permittivity Volume, Resolution Copper Mine

Next Steps

Michigan: will seek well logs, seismic data, and production histories and will integrate this data with the lightning rock properties to quantify calibration.

Arizona: have a follow-up Lightning Analysis Project with a major mining company working in Arizona where they will compare lightning rock properties with other geophysical surveys they have before and after opening the mine.

Conclusions

Geophysical surveying does not dispense with the need for drilling, and

- properly applied, it can optimize exploration programs by:
 - maximizing the rate of ground coverage, and
 - minimizing the drilling requirement.
- The importance of geophysics deriving geological information is so great, the basic principles and scope are appreciated and used by most practicing earth scientist.
- Lightning Databases, and lightning derived Resistivity and Permittivity Volumes are the latest innovative geophysical data types.
- Application of these new geophysical data types will open new doors of understanding.
- This next year DML will be calibrating Rock Properties against well and seismic data, again using DecisionSpace[®].

See Lightning, **K** Think DML **Contact Information:** - H. Roice Nelson, Jr. >>cell: 713.542.2207 e-mail: roice@dynamicmeasurement.com Dr. Jim Siebert cell:/832\423.2355 e-mail: jim@dynamicmeasurement.com

www.dynamicmeasurement.com

-579.0172

2155 West 700 South #31
 Cedar City, UT 84720
 Fax: 435.267.2668

211 Baker Road #382 Barker, TX 77413

Lightning text and images Copyright © 2014 Dynamic Measurement LLC

EN BIT